This article was downloaded by: [Mario Piattini]

On: 11 July 2011, At: 02:29

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Enterprise Information Systems
Publication details, including instructions for authors and
subscription information:

http: / /www.tandfonline.com/loi/teis20

Generating event logs from non-
T process-aware systems enabling

| M SYSTEMS business process mining
Ricardo Pérez-Castillo ® , Barbara Weber b , Jakob Pinggera b ,
Stefan Zugal b Ignacio Garcia-Rodriguez de Guzman ? & Mario
Piattini ®
2 Alarcos Research Group, University of Castilla-La Mancha, Paseo
de la Universidad 4, 13071, Ciudad Real, Spain

b Quality Engineering, University of Innsbruck, Technikerstrabe
21a, 6020, Innsbruck, Austria

Available online: 13 Jun 2011

To cite this article: Ricardo Pérez-Castillo, Barbara Weber, Jakob Pinggera, Stefan Zugal, Ignacio
Garcia-Rodriguez de Guzman & Mario Piattini (2011): Generating event logs from non-process-aware
systems enabling business process mining, Enterprise Information Systems, 5:3, 301-335

To link to this article: httpﬂcﬁ,@i.ora/10.1080/17517575.201 1.587545

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: htto://www.tandfonline.com/Daqe/terms-and—
conditions

This article may be used for research, teaching and private study purposes. Any
substantial or systematic reproduction, re-distribution, re-selling, loan, sub-licensing,
systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation
that the contents will be complete or accurate or up to date. The accuracy of any
instructions, formulae and drug doses should be independently verified with primary
sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand or costs or damages whatsoever or howsoever caused arising directly or
indirectly in connection with or arising out of the use of this material.

Downloaded by [Mario Piattini] at 02:29 11 July 2011

Enterprise Information Systems e Taylor & Francis
Vol. 5, No. 3, August 2011, 301-335 Fiviee B ransis Goovp

Generating event logs from non-process-aware systems enabling business
process mining

Ricardo Pérez-Castillo®*, Barbara Weber®, Jakob Pinggera®, Stefan Zugal®,
Ignacio Garcia-Rodriguez de Guzman® and Mario Piattini®

“Alarcos Research Group, University of Castilla-La Mancha, Paseo de la Universidad 4, 13071
Ciudad Real, Spain; *Quality Engineering, University of Innsbruck, Technikerstrafie 21a, 6020
Innsbruck, Austria

(Received 10 February 2011; Jfinal version received 8 May 201 1)

As information systems age they become legacy information systems (LISs),
embedding business knowledge not present in other artefacts. LISs must be
modernised when their maintainability falls below acceptable limits but the
embedded business knowledge is valuable information that must be preserved to
align the modernised versions of LISs with organisations’ real-world business
processes. Business process mining permits the discovery and preservation of all
meaningful embedded business knowledge by using event logs, which represent
the business activities executed by an information system. Event logs can be easily
obtained through the execution of process-aware information systems (PAISs).
However, several non-process-aware information systems also implicitly support
organisations’ business processes. This article presents a technique for obtaining
event logs from traditional information systems (without any in-built logging
functionality) by statically analysing and modifying LISs. The technique allows
the modified systems to dynamically record event logs. The approach is validated
with a case study involving a healthcare information system used in Austrian
hospitals, which shows the technique obtains event logs that effectively and
efficiently enable the discovery of embedded business processes. This implies the
techniques provided within the process mining field, which are based on event
logs, may also be applied to traditional information systems.

Keywords: process mining; event log; dynamic analysis; modernisation; legacy
system

1. Introduction

Business processes have become a key asset in organisations, since they allow them
to follow their daily performance and to address technological and organisational
changes and consequently improve their competitiveness (Castellanos ez al. 2009).
Enterprise information systems automate most of the business processes of an
organisation (Weske 2007) but uncontrolled maintenance causes them to age and
become legacy information systems (LISs) (Ulrich 2002), e.g. owing to code written
long ago becoming technologically obsolete. LISs significantly resist modification
and evolution, failing to meet new and constantly changing business requirements

*Corresponding author. Email: ricardo.pdelcastillo@uclm.es

ISSN 1751-7575 print/ISSN 1751-7583 online
© 2011 Taylor & Francis

DOI: 10.1080/17517575.2011.587545
http://www.informaworld.com

Downloaded by [Mario Piattini] at 02:29 11 July 2011

302 R. Pérez-Castillo et al.

(Paradauskas et al. 2000). Their continuous evolution implies that their maintain-
ability eventually falls below acceptable limits, meaning that they have to be
modernised (Mens 2008), which may be done, for instance, by re-implementing them
using another, better platform or an enhanced design, while the business knowledge
embedded in them is preserved (Ulrich and Newcomb 2010). It is very important to
take up the challenge of preservation of embedded knowledge for two main reasons:
(i) it is not present in any other artefact, and (ii) it must be considered when aligning
the improved system with the organisation’s current business processes (Heuvel
2006).

Since a company’s information system is usually the main repository of its
business knowledge (Mens 2008), its modernisation requires an in-depth under-
standing of how it currently supports the organisation’s business processes. This
problem motivates the use of process mining, which has become a powerful tool for
understanding what is really going on in an organisation by observing the
information systems (van der Aalst and Weijters 2005). It seeks to extract business
process knowledge from process execution logs known as event logs, which contain
information about the start and completion of activities and the resources executed
by the processes (Castellanos ez al. 2009), and are the input for the majority of the
process mining techniques and algorithms. There are several techniques in the field of
process mining for recovering business processes from three different perspectives
(van der Aalst and Weijters 2005): (i) the process perspective, focusing on the control
flow between business activities; (i) the organisational perspective, describing the
organisational structure; and (iii) the case perspective, focusing on the characterisa-
tion of each execution of the process, also known as process instances.

Currently, process mining techniques and algorithms focus on event logs
obtained from process-aware information systems (PAISs) (Dumas et al. 2005), e.g.
process management systems such as enterprise resource planning (ERP) or
customer relationship management (CRM) systems, whose nature (in particular
their process-awareness) facilitates the direct registration of events throughout
process execution. Indeed, most process-mining techniques and tools are developed
for information systems of this kind (Castellanos et al. 2009), and the event logs are
represented in a common format used by the majority of process-mining tools
known as MXML (Mining XML) (van der Aalst et al. 2009). In addition to PAISs, a
vast number of traditional (non-process-aware) information systems (most of which
have become LISs) also support the business processes of an organisation, and could
thus benefit from process mining.

However, such non-process-aware information systems impose five key
challenges for obtaining meaningful event logs for feasible use with process-mining
techniques: (i) business process definitions are implicitly described in legacy code, so
it is not obvious which events should be recorded in the event log; (ii) there is often
different granularity between callable units (invocable pieces of source code like
methods, function, procedures, etc.) of an information system and activities of a
business process; (iii) legacy code not only contains business activities, but also
technical aspects that have to be climinated when mining a business process; (iv)
since traditional systems do not explicitly define business processes, their starts and
ends have to be established; (v) finally, absence of process-awareness means that it is
not obvious how business activities should be correlated in each case.

This article proposes a technique for obtaining process event logs from
traditional (non-process-aware) information systems addressing these challenges

Downloaded by [Mario Piattini] at 02:29 11 July 2011

Enterprise Information Systems 303

on the basis of both static and dynamic analyses of the systems’ source code to
simulate the event log registration mechanism of a PAIS. Firstly, the static analysis
syntactically analyses the source code and injects pieces of it in a non-invasive way in
specific parts of the LIS. Secondly, the dynamic analysis of the modified source code
makes it possible to create an event log file in MXML format during system
execution. The proposed technique is further supported by specific information that
must be provided by business experts and systems analysts familiar with the system.
Its main advantage is the analysis of the legacy source code from a dynamic point of
view (Cornelissen et al. 2009), which means that it only considers valuable
information gathered during system execution. Its novelty is the possibility of
obtaining event logs from traditional LISs that were not designed to create them. Its
feasibility is demonstrated with a case study involving a healthcare information
system, whose results show that the event logs obtained are of good quality.

The remainder of this article is organised as follows. Section 2 discusses related
studies. Section 3 presents an example used in subsequent sections to illustrate the
challenges and the solution proposed. Section 4 explains the main challenges for
obtaining event logs from traditional information systems. Section 5 presents the
technique proposed to tackle them. Section 6 provides a case study of a healthcare
system to validate the proposal. Finally, Section 7 provides a conclusion and
discusses future work.

2. Related work

There are several studies in the literature that address the problem of preserving the
embedded business knowledge in software modernisation processes in traditional
(non-process-aware) information systems. Some are based on static analysis of
source code like Zou and Hung (2006), who developed a framework to recover
workflows from LISs. This framework statically analyses the source code and applies
a set of heuristic rules to discover business knowledge from source code. Similarly,
Perez-Castillo et al. (2009) propose MARBLE, an architecture-driven modernisation
(ADM) framework that uses the knowledge discovery metamodel (KDM) standard
to obtain business processes by statically analysing legacy source code. In addition to
source code, other works consider additional legacy software artefacts. For example,
Paradauskas and Laurikaitis (2006) present a framework to recover business
knowledge through the inspection of the data stored in databases. Ghose et al.
(2007), in turn, propose a set of text-based queries in source code and documentation
for extracting business knowledge. Motahari Nezhad et al. (2008) propose Process
Spaceship, a static analysis-based technique to discover process views from process
related data sources (e.g. web service logs). This approach addresses the event
correlation challenge using correlation conditions defined as binary predicates over
the event contents by business experts. Motahari et al. (2007) propose a similar
approach that uses web service logs to deal with the event correlation challenge.
However, this approach uses graph theory techniques instead of information
provided by business experts.

All these studies rely solely on static analysis as a reverse engineering technique to
extract business knowledge. However, they have the major disadvantage that run-
time information is not taken into account. Therefore, other solutions have been
suggested based on dynamic analysis, which has been applied for a wide set of topics
in the literature (Cornelissen er al. 2009), for instance a feature location technique

Downloaded by [Mario Piattini] at 02:29 11 July 2011

304 R. Pérez-Castillo et al.

(Eisenbarth et al. 2003), which gathers the information from a set of scenarios
invoking the features. Other authors (Di Francescomarino et al. 2009) consider
graphical user interfaces of web applications to discover business processes. In
addition, Cai et al. (2009) propose an approach combining requirement reacquisition
with dynamic and static analysis techniques. Firstly, a set of use cases is recovered by
means of interviewing the system’s users. Secondly, the system is dynamically traced
according to these use cases. Finally, the traces obtained at run-time are statically
analysed to recover business processes.

All these works based on dynamic analysis share a major limitation, since they
always propose specific solutions focusing on a sole mining algorithm to discover
specific business knowledge and use specific or proprietary formats to represent the
processes or the intermediate information. As a consequence, these approaches
cannot be reused in several mining scenarios since they consist of ad hoc solutions. In
this regard, other approaches focus on obtaining event logs as an intermediate step.
Event logs depict the sequence of business process activities executed and are then
used in several well-known process mining algorithms to discover the embedded
business knowledge. For instance, Giinther and van der Aalst (2007) provide a
generic import framework for obtaining event logs from different kinds of PAIS. It
deals with some interesting challenges, some of them similar to those in this article,
but they are related to PAISs rather than LISs. In addition, Ingvaldsen and Gulla
(2008) focus on ERP systems to obtain event logs from the SAP’s transaction data
logs.

All these proposals have been suggested for use with PAISs, although traditional
LISs have not been treated so far using the event log approach. Thus in contrast to
these studies, our solution proposes a technique based on dynamic analysis
(combined with static analysis) to obtain MXML event logs from traditional LISs
that is not restricted to a specific process-mining algorithm. Table 1 shows a
comparison between the different business process recovery techniques in the
literature and our proposal. To compare all the techniques each proposal is framed

Table 1. Comparison of other business process recovery proposals with ours.

: Without event logs Obtaining event logs
Perspective
Source of knowledg Static Dynamic Static Dynamic
Web service logs analysis analysis analysis analysis
Business Motahari Nezhad Serrour
export et al. (2008) et al. (2008)
information
Systems analyst Cai et al. (2009) Our proposal
information
Source code Eisenbarth Zou et al. (2000), Ghose Giinther
Documentation et al. (2003) Pérez-Castillo et al. (2007) et al. (2007)
et al. (2009)
Database Paradauskas et al. (2006)
User interfaces Di Francescomarino
et al. (2009)
SAP transaction data Ingvaldsen

et al. (2008)

Downloaded by [Mario Piattini] at 02:29 11 July 2011

Enterprise Information Systems 305

in the matrix of Table 1. The rows of the matrix represent all the different sources of
knowledge (or software artefacts), and the columns specify the system perspective
(static or dynamic) considered for extracting business knowledge.

In addition to all the effort regarding business process mining techniques and
algorithms, there is work about the usage of process mining techniques in other areas
apart from the business process management field. These approaches assume the
presence of event logs and they are not concerned with obtaining event logs from
systems without in-built logging functionality. For example, Funk ef al. (2010) use
process mining techniques to analyse data about product usage and user experience.
Rozinat et al. (2009) investigate the applicability of process mining to less structured
processes. Trkman et al. (2010) employ business process mining techniques to improve
the supply chain in companies. Hofstra (2009) uses process mining techniques to get
insights into the actual user behaviour and improve consequently the usability of
software products. Giinther et al. (2010) use process mining techniques to analyse the
test process of ASML, which is the world’s leading manufacturer of chip-making
equipment and a key supplier to the semi-conductor industry.

3. A demonstrative example

This section introduces an example to illustrate all the challenges in Section 4 and to
explain the working of the technique presented in Section 5. The example considers a
small business process as the object of study, and a Java application implementing it.
Figure 1 shows the source business process, which is based on the product order
process described by Weske (Weske 2007). This process allows registered customers
to place orders. In parallel, customers receive the products and the invoice.

Figure 2 shows the structure of the small application developed to support the
business process illustrated in Figure 1. The application follows the traditional
decomposition into three layers (Eckerson 1995): (i) the domain layer supports all the
business entities and controllers; (ii) the persistence layer handles data access; and (iii)
the presentation layer deals with the user interfaces (see Figure 2, left). The
BuyerController class contains most of the logic of the application (see Figure 2,
right), i.e. it provides the methods supporting the activities of the source business
process. Figure 2 includes additional symbols over the screenshot to aid the explanation
of the process-aware challenges and technique proposed in following sections.

4. Process-awareness challenges

This section shows the main challenges for obtaining event logs from traditional
information systems: lack of process-awareness, granularity, elimination of technical
code, process scope and process instance scope.

Regist New |
Customer

Recehe Sattle
H Invoice Invoice H
~ /
® &0

Buyer

N
Customer 3 At
® % Xe
A
Exists
Customer?

Figure 1. The original business process for ordering products.

Downloaded by [Mario Piattini] at 02:29 11 July 2011

306 R. Pérez-Castillo et al.

4.1. Challenge 1 — lack of process-awareness

Ascertaining which activities are executed is the first major challenge to registering
the events of a traditional (non-process-aware) information system, owing to the
different natures of traditional information systems and PAISs. While PAISs
manage processes consisting of a sequence of activities or tasks with a common
business goal using explicit process descriptions (Weske 2007) (see Figure 3A),
traditional systems are a set of methods, functions or procedures (callable units in
general) where processes are only implicitly described and thus blurred. Traditional
systems can be seen as a graph where nodes represent the callable units, and arcs
represent their invocation (see Figure 3B). The call graph thus represents the control
flow of a traditional system according to the domain logic implemented.

To address this challenge, Zou and Hung (2006) propose the ‘a callable unit/a
business activity’ approach which considers each callable unit of a traditional
information system as a candidate business activity in a process mining context. Zou
and Hung’s approach provides a good starting point, but is of a heuristic nature, and
therefore ignores several major challenges concerning the inherent nature of source
code such as the different granularity of callable units and business activities (cf.

i« B (3] BuyerController.java

¥-[3] Customer.java _ - validateCustomer(Customer)
(@@ Invoice.java i i addCustomer(Customer)
|- [J] Order.java i placeOrder(Customer, List<String>)
i@ [4) Product.java b sRArchCustomers

x5 persistence : . searchProducts()

x&-H3 presentation i receivelnvoice{Customer, Invoice)

%[JRE System Library [JavaSE-1.6]) settlelnvoice(CUStomer, Order, double)
t) receiveProducts({Customer, List<Product>)

Figure 2. Structure of the legacy Java application.

{A) Process-Aware Information Systems (B) Traditional Information Systems

=
- - -
” - N,

Process 1

*_Process 2

/e oS T

’ . " e
/ ’ 2! \
Ve N, \\
Process 2 / : X
v = s L \ !

o g ma ima® / [end }
\ =

Figure 3. Comparison between PAISs and traditional LIS.

Downloaded by [Mario Piattini] at 02:29 11 July 2011

Enterprise Information Systems 307

Section 4.2) and the mixture of business-related callable units and technical callable
units typical of LISs (cf. Section 4.3).

4.2. Challenge 2 — granularity

The different granularity of business activities and callable units in LISs constitutes
another important challenge. According to the approach proposed by Zou and Hung
(2006), each callable unit in a traditional LIS is considered as an activity to be
registered in an event log. However, traditional systems typically contain thousands
of callable units, some of which are large ones supporting the main business
functionalities of the system (case i), while many are very small and do not directly
support any business activity (case ii). In some situations, a set of small callable units
together supports a business activity (case iii).

Cases (i) and (ii) could be addressed by considering only coarse-grained callable
units as business activities and discarding fine-grained ones, but, unfortunately, the
dividing line between coarse- and fine-grained callable units is unknown. However,
different solutions may be implemented to rule out fine-grained callable units, such
as source code metrics (e.g. lines of source code metric or the cyclomatic complexity
metric) (Rozman et al. 1991). This solution is casy to implement, but has the
disadvantage of high computational costs when the event log file is written during
run-time over a long period. Alternatively, heuristic-based solutions can offer a good
alternative with minimal computational costs. For instance, all setter and getter
methods of the classes representing business entities like Customer or Product (see
Figure 2) only read or write object fields and can thus be considered fine-grained
units (case ii). To avoid mined business processes getting bloated with unnecessary
details, the fine-grained callable units are not considered as activities in the event log.

For case (iii), another heuristic can be defined to cluster some fine-grained
callable units into a business activity. For instance, if all the setfer methods of the
Customer entity (see Figure 2) are executed consecutively for the same Customer
object, all those executed callable units can be considered as a unique business
activity named, for instance, ‘create Customer ’, dealing with creating new customers.
As a consequence, those fine-grained callable units will not be discarded (despite the
previous heuristic for cases (i) and (ii)), but a new business activity is created from all
those fine-grained units executed in succession.

4.3. Challenge 3 — discarding technical code

Another important challenge is caused by the fact that LISs typically contain several
callable units that cannot be considered business activities, but are of a technical
nature. Callable units can be divided into two groups: (1) the problem domain group,
which contains the callable units related to the business entities and functionalities of
the system to solve the specific problem (l.e. those implementing the business
processes of the organisation) and (ii) the solution domain group, containing the
callable units related to the technical nature of the platform or programming
language used and aiding the callable units of the previous group. Since callable units
belonging to the solution domain do not constitute business activities, they should
not be considered in the event log.

However, how can we know whether or not a callable unit belongs to the solution
domain? As a first approximation, callable units in charge of auxiliary or technical

Downloaded by [Mario Piattini] at 02:29 11 July 2011

308 R. Pérez-Castillo et al.

functions unrelated to any use case of the system (e.g. callable units belonging to the
presentation Ot persistence layer in the example) can be ruled out. However, owing to
the delocalisation and interleaving problems (Ratiu 2009) the problem and solution
domain groups are not always discrete sets as each can contain units of the other. In
the example, the methods searchCustomers and searchProducts in the class
BuyerController (see Figure 2) mix problem and solution code, since they also
contain code related to database access. Consequently, in many cases the only
possible solution is for systems analysts to provide the information as to whether a
callable unit belongs to the problem or solution domain.

4.4. Challenge 4 — process scope

Another important challenge is to establish the scope of a business process (i.e. to
identify where a process instance starts and ends). While the start and end points of a
business process are explicitly defined in PAISs (see Figure 3A), traditional
information systems lack any explicit information about the processes supported
(see Figure 3B).

Unfortunately, the information as to where a process starts and ends cannot be
automatically derived from the source code. In the example illustrated in Section 3,
there is not enough information to determine what methods comprise the start and
end points of the business processes supported, human interaction being necessary.
On the one hand, business experts know the business processes of the organisation as
well as their start and end activities. On the other hand, systems analysts know what
callable units in the source code support the start and end activities.

4.5. Challenge 5 — process instance scope

The lack of process-awareness in traditional information systems poses another
fundamental challenge for a business process is typically not only executed in
isolation, but multiple instances are executed concurrently. If a particular business
activity is executed (i.e. a callable unit is invoked), this particular event has to be
correctly linked to one of the running process instances. Let us consider the original
business process of the example (see Figure 1). The Java application supporting it
could execute the sequence ‘Customer Validation’ (Customer 1), ‘Customer
Validation’ (Customer 2), ‘Place Order’ (Customer 1) and ‘Place Order’ (Customer
2) for two different customers. To obtain meaningful event logs, the activities
executed by the information system must be correctly linked to either Customer 1 or
Customer 2 (i.e. the customer information in this example uniquely identifies a
process instance).

Correlating an activity with a data set that uniquely identifies the process
instance it belongs to (e.g. the customer name) poses significant challenges. In
particular, the objects to be used for uniquely identifying a process instance (i.e. what
the correlation data is) must be established. If correlation objects have been
identified, their location in each callable unit within the legacy source code has to be
determined. The correlation data set can be explicitly defined by selecting the
appropriate argument or variable in each particular callable unit. In addition, the
correlation data set can be implicitly defined by choosing a classifier or data type in
the source code (e.g. the Customer class in the example), so each occurrence of the
selected classifier in a callable unit (e.g. a particular Customer object) is used as

Downloaded by [Mario Piattini] at 02:29 11 July 2011

Enterprise Information Systems 309

correlation data. In both cases, definition of the correlation data set requires the
input of business experts who know what the correlation data set is, as well as the
input of systems analysts who know the location of those correlation data.

Another related problem is that the correlation data might be lost during run-
time, since some callable units may not instantiate or use any object of the classifier
selected as the correlation data set (e.g. searchCustomers or searchProducts in the
example). For this reason, traceability mechanisms throughout callable units should
be implemented to have the correlation data available at any point of the source code
during system execution.

S. The solution proposed

This article proposes a technique to obtain event logs from non-process-aware
systems addressing the challenges discussed above. Our proposal presents the
guidelines of a generic technique, although the supporting tool, Event Traces Injector
(ETI), is specially designed for object-oriented systems.

The technique is based on static analysis of source code combined with a dynamic
analysis. Static analysis examines the source code in a static way, and instruments the
source code by injecting code for generating specific events during its execution (cf.
Section 5.1). After static analysis, the source code is dynamically analysed in run-time
by means of the injected statements (cf. Section 5.2). Figure 4 gives an overview of
the technique, the tasks carried out and the artefacts obtained (shown in grey).

5.1. Static analysis to instrument source code

The static analysis is the key stage of the technique proposed to instrument legacy source
code. Source code instrumentation means that additional statements are injected into the
original source code to record events during system execution. As traditional
information systems lack process-awareness, this task poses several challenges (as
introduced in Section 4). While challenges C1 and C2 can be addressed in a fully
automated manner (Tasks 5 and 6 in Figure 4), challenges C3, C4 and C5 require input
from the business expert and/or the systems analyst (Tasks 1-4 in Figure 4).

In Task 1, business experts identify the start and end business activities of the
business processes under investigation. This information is necessary to deal with the

5. Inject Trace g'f"sm
» Senteces (i};;m
Tool {Static Analysis) Analysis)

Figure 4. The overall process carried out by means of the proposed technique.

Downloaded by [Mario Piattini] at 02:29 11 July 2011

310 R. Pérez-Castillo et al.

challenge of process scope (Challenge C4). In parallel, in Task 2, systems analysts
examine the legacy source code and filter directories, files or sets of callable units that
support business activities, (i.e. they select the callable units belonging to the
problem domain). This information is necessary to reduce potential noise in the
event log due to technical source code (Challenge C3). Task 3 is the mapping
between start/end business activities and the callable units supporting them, which is
again supported by the systems analysts (Challenge C4).

In Task 4, systems analysts establish the correlation data set that uniquely
identifies a process instance (Challenge C5), selecting for this purpose a classifier (or
an object kind in general for any object-oriented language). Each object instance of
that classifier will be used as the correlation data set in all the callable units that use it
or have it as a parameter. This information is then used during run-time when the
dynamic analysis writes the event log to correlate the activities executed with the
appropriate process instance. Unfortunately, some callable units could not have a
correlation object in their scope, since the correlation data may not be available in
some intermediate or auxiliary callable units. In order to solve this problem, the
technique implements a solution based on the heuristic principle of locality. This
solution includes callable units, whenever the correlation data are empty, in the same
process instance as the last callable unit executed. This solution is implemented
during the final dynamic analysis in run-time (cf. Section 5.2).

Figure 2 shows the information provided by the systems analysts for mining the
‘order product’ process illustrated in Section 3. The files or directories (Java files and
packages in ETI, the supporting tool) that do not contain technical source code, and
therefore belong to the problem domain, are marked with a tick (Task 2). The
methods that support start or end activities are marked with circles, thin lines
indicating start activities and thick ones end activities (Tasks 1, 3). The callable units
‘validateCustomer’ and ‘receiveProducts’ were respectively mapped with the start
and end activities of the process ‘Ordering Products’ described in Figure 1. The
Customer class is used as correlation data set, because it allows for uniquely
identifying process instances for that particular application (Task 4). Figure 2 shows
some underlined parameters (Customer objects) that represent the correlation
information to be used in the callable unit.

After that, Task 5 consists of the syntactic analysis of the source code. The parser
analyses the original source code and injects statements as required to enable event
log generation. This analysis can be automated following the algorithm presented in
Figure 5. During static analysis, the source code is broken down into callable units
(Challenge 1), the algorithm only modifying the units belonging to the problem
domain subgroup (see line 4 of Figure 5) selected by the systems analyst in Task 3. In
addition, fine-grained callable units (e.g. setter, getter, constructor, toString and
equals callable units) are automatically discarded (Challenge C2). Finally, one
statement is injected at the beginning and one at the end of each of the callable units
filtered (see lines 12 and 13 of Figure 5).

The injected statements will invoke the WriteEvent function at runtime, which
writes the respective event into the event log (cf. Section 5.2). The injected statements
(see lines 12 and 13 of Figure 5) have the following parameters:

e The name of the callable unit being executed.
e The name of the respective process, which is only known if the callable unit
was mapped with one or more start or end activities.

Downloaded by [Mario Piattini] at 02:29 11 July 2011

Enterprise Information Systems 311

e The correlation data defined for the callable unit, whenever the unit contains
or uses an object of the classifier selected as the correlation object.

The kind of the event, which automatically represents a start event for the first
statement and an end event for the last one

Whether the callable unit was defined by experts as a start activity

Whether the callable unit was previously mapped with an end business activity
The log variable, the path where the event log will be registered, which is
provided by systems analysts.

Continuing the example described in Section 3, Figure 6 shows the method
addCustomer after the injection of the statements. According to the algorithm (see
Figure 5) statement S1 is added directly after the method signature. The body of the
source method is then added without any changes and finally statement S2 is added
after the body to the method.

5.2. Dynamic analysis for obtaining event logs

After static analysis, the instrumented source code can be released to production
again. The new code makes it possible to write event log files according to the
MXML (Mining XML) format (Giinther and van der Aalst 2007), which is used by
the process mining tool ProM (van der Aalst et al. 2009).

1 InjectTraces (CallableUnits, ProblemDomainCallableUnits, StartingCallableUnits, EndingCallableUnits)
2 InstrumentedSourceCode « ¢
3 For (¢ e CallableUnits)
4 If (c e ProblemDomainCallableUnits)
5 If (c < StartingCallableUnits)
6 isStartActivity « true
T Eise If (c EndingCaliableUnits)
8 isEndActivity « true
<] Else
10 isStartActivity « false
11 isEndActivity « false
12 statement; «WriteEvent(c. name,c.process,c.correlationSet, “start”, isStartActivity, isEndActivity, log)
13 statementz«z—WﬁteEvent(c.name.c.process.c.correlaﬁonSet.‘comptete".isSiaﬂActiv‘rty.isEndAcﬁvity, log)
14 c’.signature « c.signature
15 ¢".body < statement + c.body + statement,
16 InstrumenedtSourceCode « InstrumentedSourceCode U {c}
17 Else
18 InstrumentedSourceCode ¢« InstrumentedSourceCode U {c}

19 Retum InstrumentedSourceCode

Figure 5. Algorithm to inject traces by means of static analysis.

i public void addCustomer (Customer customer) { ——» signature
org.mxmlwriter.StaticMXMLWriter.writeEvent ("addCustomer”, null,
String.valueOf(customer), "start", false, false, "C:/log.mxml"); }31
CustomerDAO. insert (customer) ; + body
org.mxmlwriter.StatichMLWxiter.writeEvent("addCustomer", null,
String.valueOf (customer), "complete", false, false, "C:/log.mxml"); }32

}

Figure 6. The Java method ‘addCustomer’ modified with the injected statements.

Downloaded by [Mario Piattini] at 02:29 11 July 2011

312 R. Pérez-Castillo et al.

The MXML format represents an event log as a set of Process elements that
contain several ProcessInstance elements, which each have a sequence of
AuditTrailEntry elements (see Figure 7). Each AuditTrailEntry element represents
an event and consists of four main elements:

e The WorkflowModelElement that represents the executed activity.

e The EventType showing whether the activity is being executed (start) or had
been completed (complete)

e The Originator identifying the user who started or completed the activity.

e The Timestamp recording the date and time of the event.

In addition, all these elements can have a Data element that consists of a set of
Attributes including related information.

When the control flow of the modified information system reaches an injected
statement, a new event is added to the event log. The events are written by means of
the WriteEvent function (see Figure 8), which is the function invoked through the
injected statements, and has the parameters mentioned in the algorithm to inject
statements (see Figure 5), which are established during static analysis, although the
correlation data, for instance, are only known at run-time.

To add a new entry to the log file, the function starts searching for the
appropriate process in the event log where the event must be written (see line 2 of
Figure 8). If the process is null, then a new one is created. After that, the WriteEvent
function examines the correlation data to determine which process instance the event
has to be added to (see lines 3-5 of Figure 8). If the correlation data are empty, then
the algorithm takes the correlation data of the previously executed callable unit to
add the event to the correct process instance (see lines 6-9 of Figure 8). This solution
is based on simple heuristics based on the principle of locality and allows for
correlating events and process instances when no correlation data is available for the
respective event. However, in order to add the event to a process instance, the

& WorkflowlLog
¢ ta
processes 5
g}op;;ocegg L data W . EData |edttibutes 0.*IH Attribute
? 0.2 0..*
processinstances da data
0.

B Processinstance [@udtTralEntries 0..* |8 AuditTrallEntry

aventType
Ti51

=] WM(fiowadelééemelﬁt] EventTy;Sé & Timegtamp = (5r|ginator

Figure 7. MXML metamodel to represent event logs.

Downloaded by [Mario Piattini] at 02:29 11 July 2011

Enterprise Information Systems 313

1 WriteEvent (CallableUnit, ProcessName, CorrelationSet, EventType, IsStartActivity, ISEndActivity, EventlLog)
2 ProcessToAppend <« EventLog.xpath ("/Workflowl.og/Process[Name="ProcessName'][last()]")

3 If (ProcessToAppend = null)

4 ProcessToAppend « new Process (ProcessName)

5 EventLog « EventLog w {ProcessToAppend}

6 If (CorrelationSet = null)

7 CorrelationSet « PreviousCorrelationSet

8

Else

9 PreviousCorrelationSet « CorrelationSet
10 InstanceToAppend <« EventlLog.xpath ("WorkflowLog/Process[last()}/Processinstance
11 [Data/Attribute='CorrelationSet][last{)]")
12 If (IsStartActivity)
13 InstanceToAppend « new Processinstance ()
14 InstanceToAppend.Data « InstanceToAppend.Data u { CorrelationSet }
15 If (InstanceToAppend<> null)
16 auditTrailEntry = new AuditTrailEntry (CallableUnit, EventType, System.User, System.Date)
17 InstanceToAppend.Events « InstanceToAppend.Events v { auditTrailEntry }
18 ProcessToAppend.Processinstances « ProcessToAppend.Processinstances v { InstanceToAppend }
19 EventLog.Processes «+ EventLog.Processes U { ProcessToAppend }
20 If (IsEndActivity)
21 finishinginstance (InstanceToAppend)

Figure 8. Algorithm to write an event in the event log.

WriteEvent function searches for the right one taking the correlation data into
account (see lines 10 and 11 of Figure 8). If the expression does not find a process
instance for the correlation data (i.e. because the event belongs to a start activity),
the function creates a new process instance for the correlation data.

Finally, when the WeriteEvent function has determined the correct process
instance (InstanceToAppend in Figure 8), it adds the event to that particular instance
(see lines 12-21 of Figure 8). The event, represented as an AuditTrailEntry element
(see Figure 7) is created in the event log model using: (i) the name of the executed
callable unit that represents the WorkflowModelElement; (ii) the event type that is
also a parameter of this function; (iii) the user logged into the operating system that
executed the callable unit (or the user of the session if the system is a web
application), which represents the originator element; and finally (iv) the system date
and time when the callable unit was executed to represent the timestamp element.

To illustrate how the dynamic analysis stage works, Figure 9 shows a sequence
diagram according to the example introduced in Section 3, while Figure 10 shows
(omitting some details) a piece of the MXML event log obtained from the execution
of the scenario presented in Figure 9.

In the example, when the callable unit ‘validateCustomer’ (message 1 in Figure 9)
is invoked with the new object named ‘joeDoe’, a new process instance is created to
record the event related to the start activity of the process. The new process instance
is specially created to register the order of customer Joe Doe. After a respective
process instance has been created, the callable unit ‘searchProducts’ is executed
(message 1.1 in Figure 9). This callable unit does not have any Customer object
available in its scope, so the correlation data to link the respective event to the
correct process instance is missing in this case. According to the proposed heuristic-
based solution, the event related to this callable unit would be recorded in the
process instance related to Joe Doe, since the last used correlation data is oeDoe’
from message 1. The following callable unit executions (messages 2—5 in Figure 9) are
also included in the process instance related to Joe Doe. If, however, another

Downloaded by [Mario Piattini] at 02:29 11 July 2011

314 R. Pérez-Castillo et al.

/sys:OrderingSystem fctri:BuyerController

1. validateCustomer(joeDoe:Customer) i
L 1.1. searchProducts(

6. validateCustomer(aneDoe:Customer) e [j>
e

e e T e e e e e e e

2. placeOrder(joeDoe:Customer,products:List<Siring>) !
5

.]

3
3. receivelnvoicejosDoe:Customer,invoice:invoice) !

<-~-~—--_~_____,____’____“___“-_“-__:T,

4. settisinvoice(joeDoe:Customer,order:Order,48.88:double) \
by

<£ _______________________________________

5. raceiveProducts(oeDoe:Customer, products:List<Product=) | 1
1

< ______________________________________

-

-

| fer e

Figure 9. A sequence diagram of the product ordering application.

customer (e.g. Jane Doe) makes an order at the same time (see message 6 in Figure
9), the events created from those callable unit executions would be collected in
parallel in a different process instance taking into account the Customer object for
Jane Doe as correlation data.

5.3. Final evaluation of the example

The event log progressively obtained during the instrumented system execution is used
to recover business processes. Let us imagine that the following finite set of transactions
is executed with the instrumented application, which involves the registered customer
John Doe, as well as two unregistered customers: Jane Doe and Foo.

(1) Jane Doe buys pdtl and pdt2 (2) John Doe buys pdtl
(3) Jane Doe buys pdt3 and pdt4 (4) Foo buys pdt2, pdt3 and pdt4
(5) John Doe buys pdt4 (6) Foo buys pdtl

After the execution of those transactions, the resulting event log is analysed using
ProM (van der Aalst et al. 2009) to check whether the result obtained is aligned with
the original business process. The log obtained contains 1 process with 6 process

Downloaded by [Mario Piattini] at 02:29 11 July 2011

Enterprise Information Systems 315

instances. It has 78 events altogether and between 12 and 16 events per process
instance. Examination of the event log reveals that each process instance is related to
a specific transaction executed in the application. In the next step, the genetic mining
plug-in of ProM (Medeiros et al. 2007) is used for process discovery. Figure 11 shows
the business process discovered using the genetic algorithm with a configuration
consisting of (i) a population size of 100 and using 1000 generations in the genetic
algorithm. The business process discovered has a fitness value of 0.94 in a range
between 0 and 1.

The comparison between the original and the discovered business processes
shows some deviations (compare Figure 1 and Figure 11). The first difference is

<WorkflowLog>
<Process name="Product Ordering">
<Processinstance name="Joe Doe">
<Data>
<Attribute name="correlationData">joeDoe</Attribute>
</Data>
<AuditTrailEntry>
<WorkflowModelElement>validateCustomer</WorkflowModelElement>
</AuditTrailEntry>
<AuditTrailEntry>
<WorkflowModelElement>searchProducts</WorkflowModelElement>
</AuditTrailEntry>
<AuditTrailEntry>
<WorkflowModelElement>placeOrder</WorkflowModelElement >
</AuditTrailEntry>
<AuditTrailEntry>
<WorkflowModelElement>receivelnvoice </WorkflowModelElement>
</AuditTrailEntry>
<AuditTrailEntry>
<WorkflowModelElement>settleInvoice</WorkflowModelElement>
</AuditTrailEntry>
<AuditTrailEntry>
<WorkflowModelElement>receiveProducts </WorkflowModelElement >
</AuditTrailEntry>
</ProcessInstance>
<ProcessInstance name="Jane Doe">
<Data>
<Attribute name="correlationData">janeDoe </Attribute>
</Data>
</ProcessInstance>
</Process>
</WorkflowLog>

Figure 10. An MXML event log obtained from a particular scenario of execution.

receive settie
Products Invoice

Figure 11. The business process discovered using the genetic algorithm of ProM.

Downloaded by [Mario Piattini] at 02:29 11 July 2011

316 R. Pérez-Castillo et al.

related to the activity names, i.e. the names in the process discovered are inherited
from the source code and therefore differ from the labels used in the original business
process. Another important difference is that in the discovered business process,
activity ‘searchProducts’ (which is not present in the original process) occurs after
activity ‘validateCustomer’. This deviation results from a technical method that was
not filtered out by the systems analyst during static analysis. Finally, the parallel
branches at the end of the process are not mined correctly (i.e. activities
‘receivelnvoice’, ‘receiveProducts’ and ‘settleInvoice’ are carried out sequentially,
instead of concurrently). This deviation is due to the fact that the operations are
always executed in the same order through the application that supports the original
business process. Despite these deviations, the process obtained gives a good starting
point for understanding the underlying business process. In addition, the technique
proposed can be applied iteratively, i.e. business experts and systems analysts can
refine the information provided in order to obtain better event logs representing the
business process more accurately.

5.4. Coverage of the event log

During system execution, certain coverage must be ensured in order to get an event
log that considers at least an appropriate number of execution paths. The proposal
considers the function coverage, which is commonly used in software testing
(Ammann and Offutt 2008), among other research fields. This criterion counts the
instrumented callable units reached or invoked during system execution and is
considered for the proposal instead of others like sentence coverage, decision
coverage or condition coverage, as the callable unit is the analysis unit considered
according to the ‘a callable unit/a business activity’ principle.

This criterion only assesses the quality of the process of obtaining the event log,
i.e. the completeness of the event log regarding all the candidate activities to be
added. If systems analysts provide the wrong filtering concerning the instrumented
callable units (and therefore, the wrong filtering regarding the set of candidate
activities to be added), then the business processes retrieved from the log might be
inaccurate even if the event log covers a certain percentage of instrumented callable
units.

Besides the coverage criterion, the limit to be used in each case must be
established. For instance, a coverage value of 0.9 means that at least 90% of all
instrumented callable units were invoked during system execution. On one hand, the
coverage limit can be established at the beginning by business experts and systems
analysts. On the other hand, the execution time can be previously fixed, and the
coverage obtained after that time at the end of the dynamic analysis stage can be
used as a significance value of the event log obtained.

Ideally, the coverage limit is a value close to 100%. However, it is unrealistic to
assume that 100% coverage can be reached in practice, at least within a reasonable
period of time, since coverage evolution is usually characterised by an asymptotic
curve. At the beginning, when the event log is empty and no callable unit has been
executed, function coverage value quickly grows. At the end, when many callable
units have already been executed, the coverage percentage increases more gradually.

Even after the instrumented system is executed for a long time, a coverage value
of 100% cannot be guaranteed, for a legacy system might contain unreachable code
(i.e. dead code) or features rarely or never executed. For this reason, our proposal

Downloaded by [Mario Piattini] at 02:29 11 July 2011

Enterprise Information Systems 317

considers a coverage limit of 60%, evaluated by considering only the instrumented
callable units (not the total units). This percentage can be reached in a moderate time
and provides a good estimation of how complete the event log is.

As a result of the dynamic analysis stage, event logs are obtained which can be
used as the input for different process-mining algorithms. The business processes
obtained using the event log obtained provide a good starting point to understand
the source business process. If the results obtained do not provide sufficient quality, a
new iteration of code instrumentation and dynamic analysis may be performed. Both
business experts and systems analysts can refine the information provided for code
instrumentation in the next iteration. As a consequence, the event log obtained
during dynamic analysis might be better than the one previously obtained. In
addition, experts of both kinds might stop the iterations when a sufficiently high
coverage has been reached.

6. Case study

To validate the proposed technique a case study involving CHES (Meraner et al.
2009), a healthcare information system, was carried out following the formal
protocol for planning, conducting and reporting case studies proposed by Brereton
et al. (2008), thus improving the rigor and validity of the study. The following
sections present in detail the main stages defined in the formal protocol: background,
design, case selection, case study procedure, data collection, analysis and
interpretation and validity evaluation.

ETI has been specially developed to semi-automatically support the code
instrumentation in the static analysis stage. Additionally, the event logs obtained by
means of the execution of the instrumented system are then dynamically analysed
using ProM (van der Aalst et al. 2009). Both tools support the execution of the case
study.

6.1. Background

Firstly, previous research on the topic must be identified. Related work presented in
Section 2 discusses other approaches for recovering business processes from LISs
and compares them with our approach (see Table 1). Our approach focuses
particularly on traditional (non-process-aware) information systems and is based on
static and dynamic analysis of the source code to obtain events logs. Therefore, the
object of study is the technique proposed to obtain event logs from non-process-
aware information systems, and the purpose of this study is the evaluation of specific
properties of the proposed technique regarding its effectiveness and efficiency.
Taking into account the object and purpose of the study, two main research
questions are defined (see Table 2).

On the one hand, M QI checks whether the technique can obtain event logs to
address the challenges presented, and whether the event logs obtained allow process-
mining tools to effectively discover business processes. MQ1I determines whether the
business processes are accurately recovered from the event log, i.e. if the business
processes discovered represent the business behaviour of the organisation that owns
the LIS. Table 2 shows two additional research questions derived from M Q1. The
first, AQI, determines whether the business processes discovered include all the
elements required in the real-world business processes, while the second one, AQ2,

Downloaded by [Mario Piattini] at 02:29 11 July 2011

318 R. Pérez-Castillo et al.

checks whether the processes mined from the event log obtained contain any
elements that do not belong to the organisation’s business processes. While 401 is
related to the completeness of the business process models, 4Q2 is more related to
their specificity.

On the other hand, MQ2 concerns the efficiency of the technique proposed for
use with any information system regardless of its size. M Q2 is also divided into two
additional questions: 403 assesses the time spent on the injection of the special
sentences in the source code of the LIS and A4Q4 concerns the performance penalty
induced by the injected statements.

6.2. Design

The study follows the embedded case study design according to the classification
proposed by Yin (Yin 2003), whereby the case study consists of a single case (i.e. it
focuses on a single LIS) but considers several analysis units within the case. The
analysis units in this study are the different business processes supported by CHES.
Therefore, the study consists in applying the technique proposed to obtain an event
log, which is then mined to discover the set of business processes that is in turn
analysed to answer the research questions in Table 2. For this purpose, some
measures are established to answer the questions quantitatively (see Table 3).

To evaluate the effectiveness of the proposed method through question MQ1, the
study proposes using two measures: recall and precision, commonly used in
information retrieval scenarios (Raghavan et al. 1989), which we have adapted for

Table 2. Case study research questions.

Id Research question

MQ1 Can the proposed technique obtain event logs from legacy information systems to
effectively mine business processes?
AQl Can the technique obtain event logs discovering all the elements of the
: embedded business processes?
AQ2 Can the technique obtain event logs without discovering any elements not
belonging to the business processes?
MQ2 Can the proposed technique be efficiently used with any LIS?
AQ3 How much time is spent on obtaining event logs from a LIS?
AQ4 How much time is spent on discovering business processes from event logs?

Table 3. Case study measures.

Research
Id Measure Formula question
M1 Recall R = {relevant tasks}N{recovered tasks} AQl
= {relevant tasks}
M2 Precision O {relevant tasks}N{recovered tasks} AQ2
- {recovered tasks}
i __ 2PRECISION-RECALL
M3 Pmeasute P = PRECISTON+RECALL MQl
M4 Event log Tgr = T{Manuallmervemion} + T{SlaiicAnaiysis} + T{DynamicAnalysis} AQ3

creation time
M5 ThrOUghPUt time Tpp = T{Business Pr ocess Oblaining} AQ4

Downloaded by [Mario Piattini] at 02:29 11 July 2011

Enterprise Information Systems 319

one of business process recovery. They are used because precision can be seen as a
measure of exactness or fidelity, whereas recall is a measure of completeness. On the
one hand, recall (M1) represents the number of relevant elements recovered as a
function of the total of relevant elements (recovered and not recovered) depicting the
organisation’s whole business operation. Recall is related to the answer to question
AQI, while precision (M2) represents the number of relevant elements recovered
within the set of recovered elements in a business process model. An element is
considered relevant if it faithfully represents business operations or the business
behaviour of the organisation in the real world. Precision is used to answer question
AQ2. While each business process discovered is an independent variable, these two
measures are dependent variables in this study.

To evaluate these measures in a business process recovery scenario, we
considered the task element as the unit element to be evaluated. Therefore, recall
(M1) is defined as the number of true relevant tasks divided by the total number of
relevant tasks, i.e. the relevant tasks of the business process and other tasks that
should have been recovered but were not, while, precision (M2) is defined as the
number of true relevant tasks divided by the total number of relevant (recovered)
tasks, i.e. the sum of true relevant tasks and false relevant tasks that were incorrectly
recovered.

Expert business opinion is used to evaluate these measures and ascertain whether
or not a recovered task is relevant according to the organisation’s current business
processes. A business process is usually defined as a set of tasks or activities as well as
the ordering relationships. For this reason, although fasks are the only element
evaluated, the ‘relevant task’ definition implicitly considers other business process
elements related to the control flow. Relevant tasks are therefore defined by four
conditions. The first condition specifies that the task must represent a real-life
business operation within the organisation. So, the task named ‘parseDate’ obtained
from an auxiliary Java method does not represent any valuable business activity.
This condition must not be evaluated by considering task names, since these names
are inherited from legacy code and they may be biased as regards the real business
activity names provided by business experts. For example, the task named
‘receiveOrder’, despite its name, is not the same as ‘Place Order’ (see Figure 1 in
Section 3) but represents the valuable business activity in charge of receiving product
orders. The second condition ensures that all the tasks preceding the evaluated task
must be ‘recovered relevant tasks’. In order to meet this condition, there can be no
non-relevant tasks with a sequence flow to the task evaluated. The third condition
ensures that all subsequent tasks must be directly (or indirectly) ‘recovered relevant
tasks’. The second and third conditions check the control flow of a business process
model focusing on recovered tasks one by one. These conditions assume that if
preceding and following tasks are also relevant, then the control flow would be
appropriate since the relevance of those tasks is recursively evaluated in the same
manner. Finally, the fourth condition specifies that all the Data Object elements read
and written by the task evaluated must also be recovered.

The measures will be evaluated according to the business process models
discovered by two business experts from the organisation as well as two systems
analysts belonging to the system development team. The former are familiar with the
organisation’s business processes and they begin by providing a sketch of the original
business process supported by the system. The systems analysts, after discovering
business process models from the event logs obtained, take the original business

Downloaded by [Mario Piattini] at 02:29 11 July 2011

320 R. Pérez-Castillo et al.

process provided by the business experts and score the base measures like ‘recovered
relevant tasks’, ‘recovered non-relevant tasks’, ‘non-recovered relevant tasks’, and so
on. With this information, we then calculate the derived measures, precision and
recall (see Table 3). Although the precision and recall measures are appropriate, there
is an inverse relationship between them, so extracting conclusions to answer MQJ
with an isolated evaluation of these measures is very difficult. For this reason, these
measures are usually combined into a single measure (M3) known as F-measure
(Raghavan et al. 1989), which consists of a weighted harmonic mean of the two.
Two other measures are also considered when answering MQ2 and its sub-
questions in relation to the efficiency of the technique under study. Measure M4,
concerning the answer to 4Q3, includes (see Table 3): (i) the total time spent by ETI
on the injection of sentences into the legacy source code; (ii) the time spent on
manual pre-intervention by both business experts and systems analysts; and finally
(iii) the time spent on dynamic analysis (i.e. the time penalty when the modified
source code is executed). Finally, measure M35, related to 404, evaluates the time
spent on discovering business processes form the event log, which, in this study, is
provided by ProM, and depends on the algorithm used for discovering them. Both
M4 and M5 make it possible to answer the second main research question, MQ?2.

6.3. Case selection

Brereton ef al. (2008) state the case under study cannot be randomly selected. The
case must be selected according to some criteria so that to ensure the case would
provide strengthened conclusions from the execution of the case study. For this
reason, the case selection stage defines a criterion list to choose a suitable case for
study. Table 4 presents the five criteria established to select the most appropriate
information system. CI is defined to ensure that the system selected is a real-life
information system that is currently in the production stage and supports the
business operation of an organisation or company. C2 ensures that the system
selected is a traditional information system with no built-in logging mechanism. C3
makes it possible to effectively select a LIS that has been significantly modified.
Production time is not a suitable measure for checking this criterion, since it has no
direct relationship with changes to the system. Instead, C3 considers the number of
major modifications to the system that transformed the source business processes
(i.e. adaptive and perfective maintenance (ISO/IEC 2006)). C4 ensures that the
system is large enough to draw representative conclusions, exceeding 75,000 lines of
source code. Finally, criterion C5 requires the system to be based on Java
technology, since the parser of ETI supporting the technique at this stage is only
available for Java-based systems. However, the technique proposed is not specific for

Table 4. Criteria for case selection.

1d Criterion for case selection

Cl It must be an enterprise system

C2 It must be a non process-aware information system
€3 It must be a significantly modified legacy system
C4 It must be of a size not less than 75 KLOC

C5 It must be a Java-based system

Downloaded by [Mario Piattini] at 02:29 11 July 2011

Enterprise Information Systems 321

Java-based systems, but is based on the concept of callable units, which can also be
applied to other programming languages.

After evaluating several available systems according to these criteria (see Table
4), the LIS selected for study was CHES (Computer-based Health Evaluation
System)', a healthcare information system used in several Austrian hospitals in
different areas of medicine (e.g. oncology, geriatrics, psychiatry, psychosomatic
medicine) for the collection, storage and graphical processing of medical and
psychosocial data. In addition, CHES provides graphical real-time feedback of
patient-related data to individualise treatment strategies and permits recording
individual patient and treatment data (e.g. laboratory values, data from medical
interventions, questionnaire data). Data can therefore be analysed in real-time
utilising pre-defined reference and cut-off values for determining the appropriate
treatment or intervention for a patient. It thus meets CI. CHES has no mechanism
to register event logs, thus meeting C2.

The first release of CHES was moved to the production stage 4 years ago. During
that time, the most important maintenance actions in its version history were the
following:

e v0.1 was a prototype implemented in Visual Basic

e v1.0 was basically the same system as v0.1, but put on a more solid basis and
implemented in Java

e In v2.0 several configuration options were implemented (e.g. customisation of
questionnaires, computation of reference values)

e v3.0 involved a complete user interface redesign and added the support for
creating reports

e v3.1 extended CHES with a new survey application, internationalisation and
an update mechanism.

As a result, CHES underwent three major modifications and a medium-sized, its
C3 compliance thus being ensured.

The total size of CHES is 91.3 KLOC, ensuring C4. From a technological point
of view, CHES is a Java application meeting C5, and its architecture follows the
traditional structure in three layers (Eckerson 1995): (i) the domain layer supporting
all the business entities and controllers; (ii) the presentation layer dealing with the
user interfaces; and (iii) the persistency layer handling data access.

6.4. Case study procedure

In addition to the case study design, a procedure was defined to execute the study in
a finite set of steps, some of which are partially executed by ETI, the tool developed
to support the technique proposed. The steps defined are:

(1) After some meetings between staff from both the candidate organisation and
the development team as well as the researchers, the LIS was selected
according to the case selection criteria. At this point, the business experts and
systems analysts who will provide the information to modify the original
source code were appointed. The information provided by them is necessary
to perform a later manual verification in order to evaluate measures M/ and
M2 (see Section 6.2).

322

@)
3)
@)

=

o~

-

E

=

N

o~

S (5)

[+

&

=

s

(=)

.8

=]

3 (6)

e

e

o]

]

o

5

=

z

(o]

]

R. Pérez-Castillo et al.

The legacy source code was modified by means of ETI, which the systems
analysts and researchers used according to the technique proposed (cf.
Section 4), playing the roles of business experts, for which purpose they
considered the first sketch of the original business processes defined by the
real business experts in a meeting at the beginning of the study.

Before obtaining a definitive event log, the instrumented system was executed
and a test event log obtained, which was analysed using ProM. The accuracy
of the preliminary event log was checked, as it could have had any event fault
due to a non-optimal instrumentation of source code during the static
analysis stage. The systems analysts were thus able to refine the information
previously provided in ETI and iteratively instrument the source code
(returning to the second step).

When an optimal instrumentation of the legacy source code was achieved (i.c.
when a first sketch of a business process could be accurately obtained after the
dynamic analysis stage using the instrumented code), the instrumented LIS was
released in an experimental environment. The research team then used
the modified application, simulating normal users in the organisation. The
execution was led by the underlying execution scenarios derived from the sketch
of business processes provided by the business experts. For this case study, the
instrumented LIS was executed until the function coverage reached a value
greater than 60%.

The event log obtained by applying the technique was analysed with ProM,
which supports many techniques and algorithms to discover processes from
event logs, in order to discover a set of preliminary business processes. This
study used the genetic mining algorithm implemented in ProM, as it facilitates
the discovery of the sequence flow structure. In addition, according to Medeiros
et al. (2007) the accuracy of the genetic algorithm makes it the most suitable one.
The first sketch of business processes obtained by model transformation was
improved by systems analysts and researchers playing the roles of business
experts. We fitted the preliminary business processes to the reality of the
organisation, i.e. we added tasks that should have been recovered but were not,
and removed tasks erroneously recovered. Next we assessed the accuracy of
business process models by comparing each preliminary business process with its
respective enhanced business process. We obtained the value of the measures
proposed such as precision and recall by scoring the differences between the
preliminary and enhanced business processes. Steps 2—6 were iteratively executed
until business processes were obtained with an appropriate quality level.

(7) All key information related to the generation of the event log (steps 2 and 3), the

business processes discovered (step 4), as well as the business expert intervention
(step 5), was collected according to the data collection plan (see Subsection 6.5).
The data collected in the previous step were analysed and interpreted to draw
conclusions in order to answer the research questions. Subsection 6.6 presents the
results obtained in this study. Finally, the case study was reported and feedback is
given to the organisation and research community.

6.5. Data collection

Data to be collected and their sources were defined before the case study in order to
ensure repeatability, starting with the business experts’ configuration registered in

Downloaded by [Mario Piattini] at 02:29 11 July 2011

Enterprise Information Systems 323

ETI to instrument the source code. Table 5 shows the last iteration of this
information, i.e. the definitive details of the static analysis stage according to the
iterative case study procedure (see Steps 2 and 3 in Section 6.4). It also gives the
name of the processes selected by business experts together with their start and end
activities, the number of domain directories, files and technical filters selected by the
systems analysts and, finally, the correlation object, the Patient classifier, provided
by experts.

The information derived from the static analysis, provided by ETI, is also
collected, with Table 6 showing the last iteration, giving: (i) the number of source
code files in CHES; (ii) the number of Java source code files; (iii) the number of Java
files modified according to the domain files selected; (iv) the number of sentences
injected; and (v) the total time needed to obtain the modified version of CHES.

After execution of the modified version of CHES, an event log was obtained, a
summary of which is shown in Table 7 in its last iteration, provided by ProM: (1) the
total processes registered; (ii) the number of process instances; (iii) the total number
of events; (iv) the number of unique events; (v) the mean of events per process
instance; and finally (vi) the function coverage percentage reached.

Table 8 shows the data derived by business process discovery in the last iteration
(i.e. information about the business process discovered from the final, stable event
log), together with the evaluation of precision and recall measures by business experts
(c.f. the final business processes discovered as well as the business experts’ evaluation
in Appendix 1). Table 8 shows the following data for each business process:

e The number of tasks recovered (before manual intervention).

e The number of relevant tasks recovered (i.e. the number of tasks that the
business experts marked as correct).

Table 5. Business expert information to perform the static analysis stage.

Process Start activity End activity
Patient admission Input data patient Register patient
Patient stay management Select patient Save questionnaire
Data collection management Select questionnaire Update patient state
Data analysis management Check indicators Order treatment

Order intervention
Print report

Number of Selected domain directories 143
Number of Selected domain files 362
Number of Technical filters 38
Correlation object Patient

Table 6. Static analysis results.

Feature Value

LOC 91266
Number of Java files 822
Number of processed Java files 181
Number of instrumented callable units 336

Static analysis time 831" (511435 ms)

Downloaded by [Mario Piattini] at 02:29 11 July 2011

324 R. Pérez-Castillo et al.

Table 7. Event log analysis.

Feature Value
Number of processes 4
Number of process instances 336
Number of events 1185
Number of events classes 204
Mean of events per instance 3.53
Function coverage 60.7%

e The number of non-relevant tasks recovered (i.e. tasks removed from the
business process as they do not represent a business activity).

e The number of non-recovered relevant tasks (i.e. relevant tasks added by

experts to the business processes because they were not recovered).

The recall values for each final business process.

The precision values for each final business process.

The harmonic mean between both measures.

The fitness value (between 0 and 1) obtained by executing the genetic algorithm

in ProM, which represents the accuracy level of the transformation from event

log to business processes.

e The time spent on discovering business processes with ProM (i.e. the M5
measure).

Finally, Table 9 contains similar information regarding all the previous
generations of event logs up to the final one, focusing on the different time values
spent on each stage of the proposed technique: (i) manual intervention time; (ii)
static analysis time; (iii) dynamic analysis time; (iv) event log obtaining time (i.e. the
sum of the three previous values according to M4); and (V) business process
discovery time (M5). In addition, Table 9 summarises the remaining measures like
(vi) recall, MI; (vii) precision, M2; (viii) F-measure, M3; and finally (ix) the fitness
value obtained during the process discovery algorithm.

6.6. Analysis and interpretation

After data collection, data analysis obtained the evidence chains to answer the
research questions. Four iterations were carried out until an appropriate event log
was obtained, which had a total of 1185 events with an average of seven events per
process instance (see Table 7). It comprises four processes in total, related to the four
processes at the beginning of the static analysis stage (see Table 5). After this, a
business process was discovered using ProM, with 21 recovered tasks, of which 11
were relevant and 10 non-relevant, 7 additional relevant tasks then being added by
the business experts (c.f. the final discovered business processes and business experts’
evaluation in Appendix 1).

6.6.1. Effectiveness evaluation

In answer to research question MQ1, the values of the recall and precision measures were
0.638 and 0.633, respectively (the average for the four business processes). As a

325

Enterprise Information Systems

09 ¥0°0 o [43)] 620 Sl 9T 01 67 UONDIAID pADPUDIS
CL 6260 SE9°0 £e9'0 8£9°0 81 T 8C £S uva
L8T - - = o L 01 Il 1T oz
94! 9880 o0 £EE’0 0SL°0 [9 £ 6 Juowageurw Aels Juaned
16 8C6°0 688°0 0080 000°T 0 [L4 g juduIsgeURW SISA[RUR BIRQ
S SL60 [LS°0 0001 00t°0 £ 0 [4 [4 JUSWSFEURW UONOI[[0D BIR(
9y 8760 000 000 000 3 € (4 ¢ UoIssiwipe juaned
(s) owmn onyea N+ (LAMNOY (IA¥9UN (IAWPUN) (LAUNDY) (1Aw0¥) (10W) syse ouleu [9pow
ssoooad ssowg /(Y X J x @)+ IAYoY + 1A¥9Y syse) sYs®) s)se] P212A0221 $sa001d ssaursng
ssaursng aImsesw- g JATN: 2230 [1A¥Y) JUBAI[2I JUBAQ[OI-UOU JUBAJ[AI JO IaqUINN
uoIsaIg esay PRISA0OSI-UIOU POIOA0DRI Po12A0021

Jopquny Jo JequunyN O JaquInn

‘uonduosap [opow ssaooxd ssoursng ‘g J[qe

110T AInf 11 62:20 7e [tumelq ouejA] £q papeojumoq

R. Pérez-Castillo et al.

326

i i = = ¢01 ISL =3 LE ol mer
6260 S€9°0 £€9°0 8€9°0 S Lyl 04 '8 S 14
688°0 S¥s°0 0095°0 005°0 L 12! 0—X 06 9! £
0£6°0 L99°0 £85°0 8LLO 61 981 0 v'6 0t T
80L0 005°0 LSED £e8’0 1L 34 0 86 06 I
anjeA [en] [Tl [Tl [SIA [l (ur) awn (urwr) swn (urur) swn uoneI]

$SaUIT oInseall- uoISIRL] [1eo9y (urur) aurn (uTur) awy sisATeue sisA[eus UOTJUIAISIUT
mndysnoayJ, gururelqo orwreuA(q oNEBIS [enuen
o1 jueayg

110Z AInr 11 62:20 Y8 [1umerd oue] 4q papeojumod

-suonje1ousd S0[JUA2 SUIUIOOUED SUONIEIANT UT SINEA AINSLAW PUT SWILL °6 JlqelL

Downloaded by [Mario Piattini] at 02:29 11 July 2011

Enterprise Information Systems 327

consequence, the F-measure value was 0.635. These values obtained for the last iteration
were more appropriate than those obtained in previous iterations (see Figure 12).

Figure 12 shows the evolution of all these measures for the previous versions of
event logs. In the first iteration the recall and Precision measures were respectively
0.833 and 0.357. On the one hand, a higher recall value means that the proposed
method recovers a higher number of relevant business elements. On the other hand, a
lower precision value contrasts with a high recall value, which means that a large
number of non-relevant tasks have been recovered, non-relevant in most cases
because their respective callable units (from which were obtained) do not represent
business activities, but, for example, technical source code (e.g. auxiliary methods).
In some cases the tasks may have been classified as non-relevant owing to their
inappropriate level of granularity (e.g. their business knowledge is already included
in other larger relevant tasks).

The precision and recall values obtained for the first iteration were not appropriate.
In fact, the first sketch of business processes obtained from the first event log had
several mistakes and some deviations from the real-world processes (see Appendix 2).
In any event, the results obtained for the first event lo g were to be expected since there is
an inverse relationship between precision and recall measures. Indeed, the precision
value should, ideally, always be 1.0 for any recall value but, according to Davis and
Goadrich (2006), this is not possible in practice. Therefore, due to this inverse
relationship, it is possible to increase one at the cost of reducing the other. This means
that the proposed method could reduce its recall value by recovering fewer tasks, at the
cost of reducing the number of non-relevant tasks recovered, i.e. increasing the
precision value. These results were progressively obtained in subsequent iterations (see
Figure 12). The above result obtained in the fourth and last iteration was the best, since
the recall and precision values were more balanced. Indeed, the F-measure can be
considered as a special case of the general F,-measure (1), where « is 1. The a value is
used to weight precision in relation to recall, and the selected F 1-measure (M3 in Table 3)
thus signifies that both precision and recall are equally important. In this study, the F,-
measure had an average value of 0.63.

Fo— (1 +«) - PRECISION - RECALL

* o - PRECISION + RECALL (L)

In order to answer AQ7 and AQ2, and therefore M Q1, the values obtained were
additionally compared with reference values from other experiments with model
recovery in the literature (Ye and Fischer 2002, Garcia er al. 2006, Lucrédio et al.
2008). We found reports of recall and precision values close to 60%, our benchmark
values. The values obtained for our measures (precision = 64%, recall = 63% and
Fi-measure = 63%) were therefore above the reference value. Thereby, sub-
questions AQ7 and AQ2 could be answered positively, and MQ1 (see Table 2) was
evaluated as true, i.e. the technique proposed could obtain event logs from legacy
information systems to effectively mine business processes.

6.6.2. Efficiency evaluation

In order to answer MQ2, sub-questions 403 and AQ4 had also to be answered. The
time spent obtaining the event log (measure M4) consisted of the manual
intervention time, static analysis time and dynamic analysis time. Firstly, 7° {Manual

Downloaded by [Mario Piattini] at 02:29 11 July 2011

328 R. Pérez-Castillo et al.

Intervention) Was only 5 min, since at that time it was only necessary to accomplish
small changes using ETI, the tool developed. However, if we consider the time values
of previous iterations (see Table 9), the total time concerning manual intervention
was TManual Intervention} = 140 min. Thereby, T{Manual Intervention} I€Presents the
greatest part of the total time taken to obtain an event log. However, Figure 13
shows how TiManual Intervention) drastically decreased in subsequent iterations.

Secondly, Tistatic Analysisy Was 8.5 min for the last iteration, and the time values
for all iterations were quite similar (between 8.5 and 9.8 min). These values did not
decrease because the time spent on the static analysis of the legacy source code
depended on the number of lines of source code, which was constant for all
iterations. However, the minimal decrease in later iterations (see Figure 13) was due
to the fact that the problem domain was slightly reduced by discarding some
additional technical source code parts. As a consequence, less time was spent
injecting the trace statements.

Thirdly, T(pynamic Analysis} is considered a tiny performance penalty owing to the
execution of injected statements. Indeed, the ratio of injected statements per line of
source code was only 0.0074 (see Table 6), i.e. the trace statements represent only
0.7% of the entire system. In addition, this penalty is constant with respect to the
system size, since it only affects the response time of each system’s service or
functionality. For this reason 7T(pynamic Analysisy can be considered negligible.
Summarising all these time values, the event log creation time (the M4 measure) was
13.5 min for the last iteration, and 177 min in total for all iterations, which seems a
reasonable time to transform a traditional LIS with 91.3 KLOC into an information
system incorporating a mechanism to appropriately register event logs. Therefore,
question AQ3 was answered positively.

Discovery Measures Evolution

0,900
0,800
0,700
Q
= 0,600 e -,u’
g Qoo o ® ‘:'." -
P
Y 0,500 @
S
a 0,400
3 0,300
E ¥
0,200
0,100
0,000
1 2 3 4
s Precision 0,357 0,583 0,600 0,633
== = = Recall 0,833 0,778 0,500 0,638
* s oo F-Measure 0,500 0,667 0,545 0,635

Iteration

Figure 12. Recall, precision and F-measure evolution during previous iterations.

Downloaded by [Mario Piattini] at 02:29 11 July 2011

Enterprise Information Systems 329

180 - Time evolution

160 -
140 A
120 @ Business Process Discovery

100 - B Static Analysis
B Manual Intervention

Time {m)

Iteration

Figure 13. Time scale evolution during previous iterations.

In answer to sub-question 404 the time spent on discovering business process,
T'Business Process Obtainingy Was 5 min for the last iteration. This time progressively
decreased over the four iterations (see Figure 13), event logs gradually becoming
more agglutinated and concise. The time (5 min) seemed feasible for an event log
with 1185 events and obtained from the execution of the instrumented CHES system
until it reached a function coverage of above 60% regarding the total of instrumented
callable units. This coverage was achieved when the total event classes in the log was
204 (see Table 7), which represents 60.7% of 336 instrumented callable units (see
Table 6). In addition, the genetic algorithm obtained business processes with a fitness
value of 0.93, high as it could be between 0 and 1. Therefore, question 404 was
answered as true. Consequently, so was MQ2, which means that our technique can
be efficiently used to discover business processes from event logs obtained.

6.7. Threats to validity

Finally, the validity of the results had to be assessed as unbiased and true for the
whole population for which we wish to generalise the results. This section presents
the threats to the validity of this case study and possible actions to mitigate them.
There are mainly three types of validity: internal, construct and external.

A major threat to the internal validity concerned ETI, the tool developed to
modify the source code, and ProM, used to discover business processes. These
specific tools affected the results since the values measured might have been different
if’ the business processes had been obtained with another tool. To mitigate this
threat, the study could be replicated using different tools and comparing the results,
or different mining algorithms of ProM could be used.

Regarding the construct validity, the measures proposed were appropriate for
measuring the variables and answering the research questions. The precision and
recall measures allowed us to check whether the business processes obtained
accurately represented the organisation’s business behaviour. Nevertheless, the
reference value of around 60% taken from the literature (c.f. Section 6.6.1) to

Downloaded by [Mario Piattini] at 02:29 11 July 2011

330 R. Peérez-Castillo et al.

compare the results obtained may be rather relative. Unfortunately, there are not
enough benchmark values for these metrics in the process-mining field, so this threat
is not easy to mitigate. On the other hand, our approach depends on accurate logs.
To partially mitigate this risk, the proposed technique considers the function
coverage criteria. Another threat to the construct validity concerns the execution
of the instrumented system, since its use was simulated, not used in a
production environment. To address this threat, we plan to move an instrumented
version of CHES to the production stage in order to collect larger event logs, from
real life.

Finally, external validity is concerned with the generalisation of the results. This
study considers traditional LISs as the whole population. Thus, the outgoing results
could be generalised to this population. However, the specific platform of the
selected case is a threat that should be noted. Thus, the results are strictly extended
to those legacy and non-process-aware information systems based on Java language.
However, the results expected for other kinds of object-oriented systems could be
similar to the results of this case study. In order to mitigate this threat, the study
should be replicated using information systems based on different platforms, and the
results obtained in these studies compared for a better understanding of the
performance of the proposed technique.

7. Conclusions and future work

Business knowledge preservation is an important challenge to be addressed in every
software modernisation project in order to align new modernised information
systems with the real-world business processes of an organisation. Business process
mining offers a promising outlook to deal with that challenge. There are many
techniques for discovering business processes from event logs (Giinther and van der
Aalst 2007), which are automatically obtained through execution of PAISs.
However, traditional LISs usually have no inherent mechanism to create event
logs, so all efforts made in the process mining research field are inapplicable for
information systems of this kind. To solve this problem, this article presents a novel
technique based on the static and dynamic analysis of source code to obtain event
logs from non-process-aware systems. The event log thus obtained can be used to
discover business processes in the same way as an event log obtained from any PAIS.
This is a very ambitious goal, as at least five key challenges must be addressed: (i)
missing process-awareness, (i) granularity, (iii) discarding technical code, (iv)
process scope and (v) process instance scope.

The technique is divided into two stages. Firstly, the proposed technique applies
static analysis for injecting special statements into the source code. This static pre-
analysis instruments the original legacy source code by adding event logging
capability. The second stage consists of dynamic analysis performed during
execution of the instrumented system, which progressively creates an event log.
The event logs obtained are then used to discover business processes using process
mining techniques.

In a typical scenario, the static analysis of a LIS has to be performed once, and
then the modified source code can be dynamically analysed several times to obtain
event logs. However, the feedback obtained by business experts and systems analysts
after the first static and dynamic analyses can be used to iteratively and
incrementally refine subsequent instrumentations of source code. As a consequence,

Downloaded by [Mario Piattini] at 02:29 11 July 2011

Enterprise Information Systems 331

the accuracy levels of the business processes discovered from event logs increase from
iteration to iteration.

The proposed technique has been validated by means of a case study involving a
real-life LIS which is running in several Austrian hospitals. The case study was
conducted following a formal protocol. Its results show that the technique proposed
is able to obtain event logs to effectively and efficiently discover the business
processes implicitly supported by the healthcare system. We argue that our approach
works effectively, because it facilitates obtaining business processes with high
accuracy levels, (i.e. the business processes discovered faithfully represent what
actually happens in those hospitals). Furthermore, we claim that business processes
can be identified efficiently since it operates in a reasonable time. As the proposed
technique includes the capturing of event logs, it makes it possible for all the research
and development efforts carried out in the process mining field to be exploited for
traditional LISs.

Our future work will focus on adding new features to the proposed technique,
such as a traceability mechanism to take into account the call hierarchies to deal with
lost and scattered correlation data. In addition, the case study will be replicated
involving additional LISs.

Acknowledgement

This work was supported by the Spanish FPU Programme, and by the R + D projects
ALTAMIRA (JCCM, PII2109-0106-2463), PEGASO/MAGO (MICIN and FEDER,
TIN2009-13718-C02-01), MOTERO (JCCM and FEDER, PEII11-0366-9449) and MEDU-
SAS (CDTI (MICINN), IDI-20090557). It received additional support from the Quality
Engineering group at the University of Innsbruck, Austria. Finally, the case study was carried
out with the invaluable help of Bernhard Holzner and Gerhard Rumpold of the Innsbruck
Medical University.

Note
1. http://www.ches.at

References

Ammann, P. and Offutt, J., 2008. Introduction to software testing. New York, NY: Cambridge
University Press.

Brereton, P., et al., 2008. Using a protocol template for case study planning. In: Evaluation and
Assessment in Software Engineering (EASE’0S). Bari, Italia: 1-8.

Cai, Z., Yang, X., and Wang, W., 2009. Business process recovery for system maintenance —
an empirical approach. In: 25th International Conference on Software Maintenance
(ICSM'09), 20-26 September, Edmonton, Canada. Edmonton, Canada: IEEE CS, 399-
402.

Castellanos, M., er al., 2009. Business process intelligence. In: J.J. Cardoso and W.M.P. van
der Aalst, eds. Handbook of research on business process modeling. Hershey, PA: Idea
Group Inc., 456-480.

Cornelissen, B., et al., 2009. A systematic survey of program comprehension through dynamic
analysis. IEEE Transactions On Software Engineering, 35 (5), 684-702.

Davis, J. and Goadrich, M., 2006. The relationship between precision-recall and ROC curves.
In: Proceedings of the 23rd International Conference on machine learning, 25-29 June,
Pittsburgh, Pennsylvania. Madison, Wisconsin, USA: ACM, 233-240.

Di Francescomarino, C., Marchetto, A., and Tonella, P., 2009. Reverse engineering of
business processes exposed as web applications. In: 13th European Conference on Software
Maintenance and Reengineering (CSMR’09), 24-27 March, Fraunhofer IESE, Kaiser-
slautern, Germany. Washington, DC: IEEE Computer Society, 139-148.

Downloaded by [Mario Piattini] at 02:29 11 July 2011

332 R. Pérez-Castillo et al.

Dumas, M., van der Aalst, W., and Ter Hofstede, A., 2005. Process-aware information
systems: bridging people and software through process technology. Hoboken, NJ: John
Wiley & Sons.

Eckerson, W., 1995. Three tier client/server architecture: achieving scalability, performance
and efficiency in client server applications. Open Information Systems, 10 (1), 3.

Eisenbarth, T., Koschke, R., and Simon, D., 2003. Locating features in source code. JEEE
Transactions on Software Engineering, 29 (3), 210-224.

Funk, M., et al, 2010. In situ evaluation of recommender systems: framework and
instrumentation. International Journal of Human—Computer Studies, 68 (8), 525-547.
Garcia, V.C,, et al, 2006. From specification to experimentation: a software component
search engine architecture. In: 9th International Symposium on Component-Based Software
Engineering (CBSE 2006), 29 June-1 July, Visteras, Sweden. Berlin, Germany: Springer-

Verlag. LNCS 4063, 82-97.

Ghose, A., Koliadis, G., and Chueng, A., 2007. Process discovery from model and text
artefacts. In: IEEE Congress on Services (Services’07), 9-13 July, Salt Lake City, UT.
Available from: http://ro.uow.edu.au/cgi/viewcontent.cgi?article=1573&context=info
papers, 167-174.

Giinther, C.W., Rozinat, A., and Aalst, W.M.P,, 2010. Activity mining by global trace
segmentation. /n: S. Rinderle-Ma, S. Sadiq, and F. Leymann, eds. Business process
management workshops. Berlin, Heidelberg: Springer, 128—-139.

Giinther, C.W. and van der Aalst, W.M.P., 2007. A generic import framework for process
event logs. Business Process Intelligence Workshop (BPI’06). Lecture Notes in Computer
Science, 4103, 81-92.

Heuvel, W.-J.v.d., 2006. Aligning modern business processes and legacy systems: a component-
based perspective (Cooperative information systems). Cambridge, MA: The MIT Press.

Hofstra, P., 2009. Analysing the effect of consumer knowledge on product usability using process
mining techniques. Thesis (Masters). Eindhoven, The Netherlands, Technische Universiteit
Eindhoven, 71.

Ingvaldsen, J.E. and Gulla, J.A., 2008. Preprocessing support for large scale process mining of
SAP transactions. Business Process Intelligence Workshop (BPI'07). Lecture Notes in
Computer Science, 4928, 30-41.

ISO/IEC, 2006. ISO/IEC 14764:2006. Software engineering — Software life cycle processes —
Maintenance [online]. ISO/IEC. Available from: http://www.iso.org/iso/catalogue_detail.
htm?csnumber=39064 [Accessed 24 May 2011].

Lucrédio, D., Fortes, De M., and Whittle, J., 2008. MOOGLE: a model search engine. In: K.
Czarnecki, I. Ober, J.-M. Bruel, A. Uhl, and M. Vdlter, eds. Model driven engineering
languages and systems. Berlin/Heidelberg: Springer, 296-310.

Medeiros, A.K., Weijters, A.J,, and Aalst, W.M., 2007. Genetic process mining: an
experimental evaluation. Data Mining and Knowledge Discovery, 14 (2), 245-304.

Mens, T., 2008. Introduction and roadmap: history and challenges of software evolution. Vol. 1.
Springer Berlin Heidelberg: Software Evolution, 1-11.

Meraner, V., et al, 2009. Development of a screening tool for the identification of
psychooncological treatment need in breast cancer patients. Psycho-Oncology, 18 (9), 974
983.

Motahari, H.R., et al., 2007. Process spaceship: discovering process views in process spaces.
Berlin Heidelberg, Germany: The University of New South Wales, Australia.

Motahari Nezhad, H., et al., 2008. Exploration of discovered process views in process
spaceship. In: A. Bouguettaya, I. Krueger and T. Margaria, eds. Service-oriented
computing — ICSOC 2008. Vol. 5364. Berlin/Heidelberg: Springer, 724-725.

Paradauskas, B. and Laurikaitis, A., 2006. Business knowledge extraction from legacy
information systems. Journal of Information Technology and Control, 35 (3), 214-221.

Pérez-Castillo, R., et al., 2009. MARBLE: a modernization approach for recovering business
processes from legacy systems. In: International Workshop on Reverse Engineering Models
from Software Artifacts (REM'09), Lille, France, Simula Research Laboratory Reports.
Available from: http://portal.acm.org/citation.cfm?id=1686245, 17-20.

Raghavan, V., Bollmann, P., and Jung, G. S., 1989. A critical investigation of recall and
precision as measures of retrieval system performance. ACM Transactions on Information
Systems, 7 (3), 205-229.

Downloaded by [Mario Piattini] at 02:29 11 July 2011

Enterprise Information Systems 333

Ratiu, D., 2009. Reverse engineering domain models from source code. In: International
Workshop on Reverse Engineering Models from Software Artifacts (REM'09), 13-16
October, Lille, France. Washington, DC: Simula Research Laboratory, 13-16.

Rozinat, A., et al., 2009. Process mining applied to the test process of wafer scanners in
ASML. Transactions on Systems Man and Cybernetics—Part C, 39 (4), 474—479.

Rozman, 1., Gyoérkos, J., and Dogsa, T., 1991. Relation between source code metrics and
structure analysis metrics. In: Proceedings of the 3rd European Software Engineering
Conference. London, UK. Springer-Verlag, 332-342.

Serrour, B., et al.,, 2008. Message correlation and business protocol discovery in service
interaction logs. fn: Z. Bellahséne and M. Léonard, eds. Advanced information systems
engineering. Vol. 5074. Berlin/Heidelberg: Springer, 405-419.

Trkman, P., et al., 2010. The impact of business analytics on supply chain performance.
Decision Support Systems, 49 (3), 318-327.

Ulrich, W.M., 2002. Legacy systems: transformation strategies. Saddle River, NJ: Prentice
Hall.

Ulrich, W.M. and Newcomb, P.H., 2010. Information systems transformation. Architecture
driven modernization case studies. Burlington, MA: Morgan Kauffman.

van der Aalst, W. and Weijters, A.J.M.M., 2005. Process mining. /n: M. Dumas, W. van der
Aalst, and A. Ter Hofstede, eds. Process-aware information systems: bridging people and
software through process technology. John Wiley & Sons, 235-255.

van der Aalst, W.M.P., et al,, 2009. ProM: the process mining toolkit. /n: 7th International
Conference on Business Process Management (BPM'09) — Demonstration Track. Vol. 489.
Ulm, Germany, Berlin, Germany: Springer-Verlag. 1-4.

Weske, M., 2007. Business process management: concepts, languages, architectures. Leipzig,
Alemania: Springer-Verlag Berlin Heidelberg.

Ye, Y. and Fischer, G., 2002. Supporting reuse by delivering task-relevant and personalized
information. In: 24th International Conference on Software Engineering, 19-25 May,
Orlando, Florida. New York, NY: ACM, 513-523.

Yin, R.K. 2003. Case study research. Design and methods. 3rd ed. London: Sage.

Zou, Y., and Hung, M., 2006. An approach for extracting workflows from e-commerce
applications. In: Proceedings of the Fourteenth International Conference on Program
Comprehension. Washington, DC: IEEE Computer Society, 127-136.

Downloaded by [Mario Piattini] at 02:29 11 July 2011

334 R. Pérez-Castillo et al.

Appendix 1. Business experts’ evaluation

This appendix shows the business process discovered from the CHES system using our
technique. Figure Al shows the assessment made by systems analysts and researchers who
play the role of business experts in the case study. The assessment is differentiated with
colours: (i) green tasks with bold type represent relevant tasks recovered (i.e. tasks approved
by experts); (ii) red tasks with bold type represent non-relevant tasks recovered (i.e. tasks
removed by experts); and finally (iii) grey tasks with italic represent non-recovered relevant
tasks (i.e. tasks added by experts).

Patiant Admission

Hospital Staf
Data Collection

Data Analysis Mgt

Patient Stay Mgmt

Figure Al. The CHES business process after the final assessment.

Downloaded by [Mario Piattini] at 02:29 11 July 2011

Enterprise Information Systems 335

Appendix 2. The first sketch of a business process

Figure A2 shows the first sketch of business process discovered from CHES system using the
proposed technique. The business process depicted, which corresponds to the first iteration,
has a spaghetti-like control flow and some isolated sub-processes and is too fine-grained. As a
consequence, the precision and recall values obtained for this business processes were
inappropriate (cf. Section 6.6).

e | =

i w i

£

=]

Figure A2. A first sketch of the business process supported by CHES.

